Learning a Deep Compact Image Representation for Visual Tracking

نویسندگان

  • Naiyan Wang
  • Dit-Yan Yeung
چکیده

In this paper, we study the challenging problem of tracking the trajectory of a moving object in a video with possibly very complex background. In contrast to most existing trackers which only learn the appearance of the tracked object online, we take a different approach, inspired by recent advances in deep learning architectures, by putting more emphasis on the (unsupervised) feature learning problem. Specifically, by using auxiliary natural images, we train a stacked denoising autoencoder offline to learn generic image features that are more robust against variations. This is then followed by knowledge transfer from offline training to the online tracking process. Online tracking involves a classification neural network which is constructed from the encoder part of the trained autoencoder as a feature extractor and an additional classification layer. Both the feature extractor and the classifier can be further tuned to adapt to appearance changes of the moving object. Comparison with the state-of-the-art trackers on some challenging benchmark video sequences shows that our deep learning tracker is more accurate while maintaining low computational cost with real-time performance when our MATLAB implementation of the tracker is used with a modest graphics processing unit (GPU).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

Visual Tracking with Online Incremental Deep Learning and Particle Filter

To solve the problem of tracking the trajectory of a moving object and learning a deep compact image representation in the complex environment, a novel robust incremental deep learning tracker is presented under the particle filter framework. The incremental deep classification neural network was composed of stacked denoising autoencoder, incremental feature learning and support vector machine ...

متن کامل

Image Classification via Sparse Representation and Subspace Alignment

Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...

متن کامل

Deep Boosting: Joint feature selection and analysis dictionary learning in hierarchy

This work investigates how the traditional image classification pipelines can be extended into a deep architecture, inspired by recent successes of deep neural networks. We propose a deep boosting framework based on layer-by-layer joint feature boosting and dictionary learning. In each layer, we construct a dictionary of filters by combining the filters from the lower layer, and iteratively opt...

متن کامل

Self-taught learning of a deep invariant representation for visual tracking via temporal slowness principle

Visual representation is crucial for a visual tracking method’s performances. Conventionally, visual representations adopted in visual tracking rely on hand-crafted computer vision descriptors. These descriptors were developed generically without considering tracking-specific information. In this paper, we propose to learn complex-valued invariant representations from tracked sequential image p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013